AI and sleep disorders: enhancing diagnosis and treatment

A man not able to get to sleep because of sleep disorder
Copyright: © iStock/mactrunk

According to the American Academy of Sleep Medicine, artificial intelligence has the potential to improve efficiencies and precision in sleep medicine.

The new position statement from the American Academy of Sleep Medicine focuses on using AI to improve patient-centred care and better outcomes for patients with sleeping disorders.

Enhancing analysis through AI

The research published online as in the Journal of Clinical Sleep Medicine was developed by the AASM’s Artificial Intelligence in Sleep Medicine Committee. According to the statement, the electrophysiological data collected during polysomnography – the most comprehensive type of sleep study – is well-positioned for enhanced analysis through AI and machine-assisted learning.

Lead author and committee Chair, Dr Cathy Goldstein, associate professor of sleep medicine and neurology at the University of Michigan explained: “When we typically think of AI in sleep medicine, the obvious use case is for the scoring of sleep and associated events, this would streamline the processes of sleep laboratories and free up sleep technologist time for direct patient care.”

Optimisation and personalisation of sleep treatments

Due to the vast amounts of data collected by sleep centres, AI and machine learning could advance sleep care, resulting in more accurate diagnoses, prediction of disease and treatment prognosis, characterisation of disease subtypes, precision in sleep scoring, and optimisation and personalisation of sleep treatments. Goldstein noted that AI could be used to automate sleep scoring while identifying additional insights from sleep data.

Goldstein said: “AI could allow us to derive more meaningful information from sleep studies, given that our current summary metrics, for example, the apnea-hypopnea index, aren’t predictive of the health and quality of life outcomes that are important to patients.

“Additionally, AI might help us understand mechanisms underlying obstructive sleep apnea, so we can select the right treatment for the right patient at the right time, as opposed to one-size-fits-all or trial and error approaches.”

Integrating AI in sleep medicine practices

Important considerations for the integration of AI into the sleep medicine practice include transparency and disclosure, testing on novel data, and laboratory integration. The statement recommends that manufacturers disclose the intended population and goal of any program used in the evaluation of patients; test programs intended for clinical use on independent data and aid sleep centres in the evaluation of AI-based software performance.

Goldstein explained: “AI tools hold great promise for medicine in general, but there has also been a great deal of hype, exaggerated claims and misinformation, we want to interface with industry in a way that will foster safe and efficacious use of AI software to benefit our patients. These tools can only benefit patients if used with careful oversight.”

Do you want the latest news and updates from Health Europa? Click here to subscribe to all the latest updates, and stay connected with us here.


Subscribe to our newsletter


Please enter your comment!
Please enter your name here